尽管我们都知道闪电只不过是自然界中一种常见的放电现象,但当看到闪电划过夜空的时候,我们依然会对闪电感到敬畏,毕竟在我们看来,闪电的威力那是相当的惊人。

在过去的日子里,早已有科学家对闪电进行过大量的研究,研究结果表明,闪电的电压和电流确实相当高,其电压峰值通常可以达到上亿伏特,而其电流峰值也可以达到上万安培。
这看上去似乎很强大,但由于闪电的持续时间通常都极为短暂,因此闪电携带的能量并没有我们想象中的那样高得离谱,其携带的能量平均值大约为10亿焦耳,而一度电换算下来就是360万焦耳,所以一道闪电大概有278度电(平均值),这样的电能大概可供一个三口之家正常使用2个月左右。

统计数据表明,地球上平均每年会出现14亿次闪电,简单计算一下就可以知道,这大概相当于3900亿度电,不得不说,这个数字确实是相当惊人,然而与我们人类的用电量相比,这又显得小了点,因为人类平均每年的用电量高达20多万亿度。
也就是说,就算我们可以将地球上所有闪电都收集起来,并且还可以对其进行100%的利用,也远远无法达到人类的需求,我们仍然需要发电。不过闪电的能量确实非常可观,如果能将这些电能利用起来,那当然是一件好事,但问题是,我们有这个能力吗?
关于闪电的形成原理,目前普遍观点认为,云层中的冰晶、液滴、冰水混合物、尘埃颗粒等等物质在复杂的气流中互相碰撞和摩擦,进而产生大量的电荷。

以我们人类目前的能力,完全可以测量出特定云层是否存在发生闪电的条件,实际上,我们甚至还可以把天上的闪电引到特定位置,比如说我们可以向目标云层发射一枚拖拽着金属丝的小火箭,然后利用金属丝将云层中的闪电直接引下来。

另一方面来讲,即使我们未来发展出了能够高效储存闪电能量的技术,也会面临一个巨大的难题,那就是从整体上来看,地球上的闪电分布区域非常广泛,其“行踪”也很难捕捉,所以我们最多也只能够在一些闪电特别集中的区域来收集闪电。
比如说在委内瑞拉的卡塔通博河和马拉开波湖交汇处的沼泽区域,就因为特殊的地理环境而成为了地球上的“闪电高发区”。
简单来讲,该区域有三面都被山脉包围,并且还形成了一个“V”字形的构造,在夜晚的时候,来自海洋的暖湿气流会从“V”字形构造的“开口”处大量涌入,随着“V”字形构造的逐渐变窄,气流的速度也会不断加快,当气流到达“V”字形构造的底部时,就会因为山脉的阻挡而迅速抬升,并与上方的冷空气发生猛烈“交锋”,进而形成大型雷暴复合体。
